Rohde & Schwarz Empowers Qualcomm for 5G-Advanced and 6G Innovation
In the evolving landscape of 5G networks, leveraging frequency ranges FR1 (0.41 to 7.125 GHz) and FR2 (24.25 to 71 GHz) has been pivotal. As the era of 5G-Advanced and 6G unfolds, a third frequency range is being discussed in global regulatory and industry consortiums worldwide. FR3, which is also known as upper-midband, spanning 7.125 to 24.25 GHz, will open a new frontier for mobile communication technology. Rohde & Schwarz technology plays a key role in enabling Qualcomm Technologies to show the readiness and effectiveness of the latest RF modem technology for FR3. At the most recent World Radio Conference 2023, held in November and December 2023 in Dubai, organized and hosted by the International Telecommunication Union (ITU), a consensus emerged among regulatory bodies and industry leaders to explore additional spectra for the next generation of mobile communication, officially labeled IMT-2030, also known as 6G. Notably, the 14.8 to 15.35 GHz frequency range has been earmarked for global study. In addition, local agencies like the Federal Communications Commission (FCC) in the United States are also eyeing the upper 12 GHz band (12.7 to 13.25 GHz) for future wireless applications. In anticipation of these developments, Rohde & Schwarz, leading supplier of test and measurement solutions to the wireless industry, has enabled Qualcomm Technologies, a trailblazer in wireless system technology, to demonstrate that the Giga-MIMO system for tomorrow’s infrastructure is ready and effective to operate in these frequencies. It promises enhanced data performance while offering coverage comparable to current 5G massive MIMO networks operational at 3.5 GHz. To validate the performance of this prototype, Qualcomm Technologies utilized the R&S SMW200A vector signal generator and R&S FSW signal and spectrum analyzer from Rohde & Schwarz. The setup included specialized firmware for the testing of different subcarrier spacings with wider signal bandwidths compared to today’s 3GPP physical layer specifications. The wider bandwidths will ultimately enable higher data rates and lower latency. Andreas Pauly, Chief Technology Officer at Rohde & Schwarz, said: “We are thrilled to extend our support of Qualcomm Technologies and explore the new frontier of mobile communications together. Our tailored test solutions are instrumental in advancing research for 5G-Advanced and 6G networks, and exploring the possibilities of the FR3 frequency range lays the foundations for the success of tomorrow’s mobile applications.” Tingfang Ji, Vice President of Engineering at Qualcomm Wireless Research, Qualcomm Technologies, Inc., said: “We are committed to pioneering next-generation mobile technologies and are grateful to Rohde & Schwarz for its support in helping to make this a reality. Our efforts to enable Giga-MIMO in upper midband for wide-area coverage help to set the stage for 6G and a transformative leap in wireless communication.” Demonstration of FR3 signal generation and analysis at MWC Barcelona At MWC Barcelona, Rohde & Schwarz will demonstrate a high performance signal generation and analysis setup for early FR3 research, featuring the latest vector signal generator and analyzer products. The setup consists of the brand new R&S SMW200A, not only with a new front panel and user interface but also significant improvements in EVM performance. On the analysis side, the R&S FSVA3000 includes special features like IQ noise cancellation to achieve outstanding EVM measurement performance thanks to a noise corrected measurement path. Dedicated 5G signals for FR3 are being generated and analyzed as part of the demonstration. Rohde & Schwarz will present its comprehensive test solutions for the mobile industry including a setup demonstrating high-performance signal generation and analysis for FR3 signals at the Mobile World Congress 2024. Visitors can find Rohde & Schwarz in hall 5, booth 5A80, at the Fira Gran Via in Barcelona. For more information visit: https://www.rohde-schwarz.com/